T-Test: What It Is With Multiple Formulas and When To Use Them (2024)

What Is a T-Test?

A t-test is an inferential statistic used to determine if there is a significant difference between the means of two groups and how they are related. T-tests are used when the data sets follow a normal distribution and have unknown variances, like the data set recorded from flipping a coin 100 times.

The t-test is a test used for hypothesis testing in statistics and uses the t-statistic, the t-distribution values, andthe degrees of freedomto determine statistical significance.

Key Takeaways

  • A t-test is an inferential statistic used to determine if there is a statistically significant difference between the means of two variables.
  • The t-test is a test used for hypothesis testing in statistics.
  • Calculating a t-test requires three fundamental data values including the difference between the mean values from each data set, the standard deviation of each group, and the number of data values.
  • T-tests can be dependent or independent.

T-Test: What It Is With Multiple Formulas and When To Use Them (1)

Understanding the T-Test

A t-test compares the average values of two data sets and determines if they came from the same population. In the above examples, a sample of students from class A and a sample of students from class B would not likely have the same mean and standard deviation. Similarly, samples taken from the placebo-fed control group and those taken from the drug prescribed group should have a slightly different mean and standard deviation.

Mathematically, the t-test takes a sample from each of the two sets and establishes the problem statement. It assumes a null hypothesis that the two means are equal.

Using the formulas, values are calculated and compared against the standard values. The assumed null hypothesis is accepted or rejected accordingly. If the null hypothesis qualifies to be rejected, it indicates that data readings are strong and are probably not due to chance.

The t-test is just one of many tests used for this purpose. Statisticians use additional tests other than the t-test to examine more variables and larger sample sizes. For a large sample size, statisticians use az-test. Other testing options include the chi-square test and the f-test.

Using a T-Test

Consider that a drug manufacturer tests a new medicine. Following standard procedure, the drug is given to one group of patients and a placebo to another group called the control group. The placebo is a substance with no therapeutic value and serves as a benchmark to measure how the other group, administered the actual drug, responds.

After the drug trial, the members of the placebo-fed control group reportedan increase in average life expectancy of three years, while the members of the group who are prescribed the new drug reported an increase in average life expectancy of four years.

Initial observation indicates that the drug is working. However, it is also possible that the observation may be due to chance. A t-test can be used to determine if the results are correct and applicable to the entire population.

Four assumptions are made while using a t-test. The data collected must follow a continuous or ordinal scale, such as the scores for an IQ test, the data is collected from a randomly selected portion of the total population, the data will result in a normal distribution of a bell-shaped curve, and equal or hom*ogenous variance exists when the standard variations are equal.

T-Test Formula

Calculating a t-test requires three fundamental data values. They include the difference between the mean values from each data set, or the mean difference, the standard deviation of each group, and the number of data values of each group.

This comparison helps to determine the effect of chance on the difference, and whether the difference is outside that chance range. The t-test questions whether the difference between the groups represents a true difference in the study or merely a random difference.

The t-test produces two values as its output: t-value and degrees of freedom. The t-value, or t-score, is a ratio of the difference between the mean of the two sample sets and the variation that exists within the sample sets.

The numerator value is the difference between the mean of the two sample sets. The denominator is the variation that exists within the sample sets and is a measurement of the dispersion or variability.

This calculated t-value is then compared against a value obtained from a critical value table called the T-distribution table. Higher values of the t-score indicate that a large difference exists between the two sample sets. The smaller the t-value, the more similarity exists between the two sample sets.

T-Score

A large t-score, or t-value, indicates that the groups are different while a small t-score indicates that the groups are similar.

Degrees of freedom refer to the values in a study that has the freedom to vary and are essential for assessing the importance and the validity of the null hypothesis. Computation of these values usually depends upon the number of data records available in the sample set.

Paired Sample T-Test

The correlated t-test, or paired t-test, is a dependent type of test and is performed when the samples consist of matched pairs of similar units, or when there are cases of repeated measures. For example, there may be instances where the same patients are repeatedly tested before and after receiving a particular treatment. Each patient is being used as a control sample against themselves.

This method also applies to cases where the samples are related or have matching characteristics, like a comparative analysis involving children, parents, or siblings.

The formula for computing the t-value and degrees of freedom for a paired t-test is:

T=mean1mean2s(diff)(n)where:mean1andmean2=Theaveragevaluesofeachofthesamplesetss(diff)=Thestandarddeviationofthedifferencesofthepaireddatavaluesn=Thesamplesize(thenumberofpaireddifferences)n1=Thedegreesoffreedom\begin{aligned}&T=\frac{\textit{mean}1 - \textit{mean}2}{\frac{s(\text{diff})}{\sqrt{(n)}}}\\&\textbf{where:}\\&\textit{mean}1\text{ and }\textit{mean}2=\text{The average values of each of the sample sets}\\&s(\text{diff})=\text{The standard deviation of the differences of the paired data values}\\&n=\text{The sample size (the number of paired differences)}\\&n-1=\text{The degrees of freedom}\end{aligned}T=(n)s(diff)mean1mean2where:mean1andmean2=Theaveragevaluesofeachofthesamplesetss(diff)=Thestandarddeviationofthedifferencesofthepaireddatavaluesn=Thesamplesize(thenumberofpaireddifferences)n1=Thedegreesoffreedom

Equal Variance or Pooled T-Test

The equal variance t-test is an independent t-test and is used when the number of samples in each group is the same, or the variance of the two data sets is similar.

The formula used for calculating t-value and degrees of freedom for equal variance t-test is:

T-value=mean1mean2(n11)×var12+(n21)×var22n1+n22×1n1+1n2where:mean1andmean2=Averagevaluesofeachofthesamplesetsvar1andvar2=Varianceofeachofthesamplesetsn1andn2=Numberofrecordsineachsampleset\begin{aligned}&\text{T-value}=\frac{\textit{mean}1-\textit{mean}2}{\sqrt{\frac{(n1-1)\times\textit{var}1^2+(n2-1)\times\textit{var}2^2}{n1+n2-2}\times\frac{1}{n1}+\frac{1}{n2}}}\\&\textbf{where:}\\&\textit{mean}1 \text{ and } \textit{mean}2=\text{Average values of each}\\&\text{of the sample sets}\\&\textit{var}1\text{ and }\textit{var}2=\text{Variance of each of the sample sets}\\&n1\text{ and }n2=\text{Number of records in each sample set}\end{aligned}T-value=n1+n22(n11)×var12+(n21)×var22×n11+n21mean1mean2where:mean1andmean2=Averagevaluesofeachofthesamplesetsvar1andvar2=Varianceofeachofthesamplesetsn1andn2=Numberofrecordsineachsampleset

and,

DegreesofFreedom=n1+n22where:n1andn2=Numberofrecordsineachsampleset\begin{aligned} &\text{Degrees of Freedom} = n1 + n2 - 2 \\ &\textbf{where:}\\ &n1 \text{ and } n2 = \text{Number of records in each sample set} \\ \end{aligned}DegreesofFreedom=n1+n22where:n1andn2=Numberofrecordsineachsampleset

Unequal Variance T-Test

The unequal variance t-test is an independent t-test and is used when the number of samples in each group is different, and the variance of the two data sets is also different. This test is also called Welch's t-test.

The formula used for calculating t-value and degrees of freedom for an unequal variance t-test is:

T-value=mean1mean2(var1n1+var2n2)where:mean1andmean2=Averagevaluesofeachofthesamplesetsvar1andvar2=Varianceofeachofthesamplesetsn1andn2=Numberofrecordsineachsampleset\begin{aligned}&\text{T-value}=\frac{mean1-mean2}{\sqrt{\bigg(\frac{var1}{n1}{+\frac{var2}{n2}\bigg)}}}\\&\textbf{where:}\\&mean1 \text{ and } mean2 = \text{Average values of each} \\&\text{of the sample sets} \\&var1 \text{ and } var2 = \text{Variance of each of the sample sets} \\&n1 \text{ and } n2 = \text{Number of records in each sample set} \end{aligned}T-value=(n1var1+n2var2)mean1mean2where:mean1andmean2=Averagevaluesofeachofthesamplesetsvar1andvar2=Varianceofeachofthesamplesetsn1andn2=Numberofrecordsineachsampleset

and,

DegreesofFreedom=(var12n1+var22n2)2(var12n1)2n11+(var22n2)2n21where:var1andvar2=Varianceofeachofthesamplesetsn1andn2=Numberofrecordsineachsampleset\begin{aligned} &\text{Degrees of Freedom} = \frac{ \left ( \frac{ var1^2 }{ n1 } + \frac{ var2^2 }{ n2 } \right )^2 }{ \frac{ \left ( \frac{ var1^2 }{ n1 } \right )^2 }{ n1 - 1 } + \frac{ \left ( \frac{ var2^2 }{ n2 } \right )^2 }{ n2 - 1}} \\ &\textbf{where:}\\ &var1 \text{ and } var2 = \text{Variance of each of the sample sets} \\ &n1 \text{ and } n2 = \text{Number of records in each sample set} \\ \end{aligned}DegreesofFreedom=n11(n1var12)2+n21(n2var22)2(n1var12+n2var22)2where:var1andvar2=Varianceofeachofthesamplesetsn1andn2=Numberofrecordsineachsampleset

Which T-Test to Use?

The following flowchart can be used to determine which t-test to use based on the characteristics of the sample sets. The key items to consider include the similarity of the sample records, the number of data records in each sample set, and the variance of each sample set.

T-Test: What It Is With Multiple Formulas and When To Use Them (2)

Example of an Unequal Variance T-Test

Assume that the diagonal measurement of paintings received in an art gallery is taken. One group of samples includes 10 paintings, while the other includes 20 paintings. The data sets, with the corresponding mean and variance values, are as follows:

Set 1Set 2
19.728.3
20.426.7
19.620.1
17.823.3
18.525.2
18.922.1
18.317.7
18.927.6
19.520.6
21.9513.7
23.2
17.5
20.6
18
23.9
21.6
24.3
20.4
23.9
13.3
Mean19.421.6
Variance1.417.1

Though the mean of Set 2 is higher than that of Set 1, we cannot conclude that the population corresponding to Set 2 has a higher mean than the population corresponding to Set 1.

Is the difference from 19.4 to 21.6 due to chance alone, or do differences exist in the overall populations of all the paintings received in the art gallery? We establish the problem by assuming the null hypothesis that the mean is the same between the two sample sets and conduct a t-test to test if the hypothesis is plausible.

Since the number of data records is different (n1 = 10 and n2 = 20) and the variance is also different, the t-value and degrees of freedom are computed for the above data set using the formula mentioned in the Unequal Variance T-Test section.

The t-value is -2.24787. Since the minus sign can be ignored when comparing the two t-values, the computed value is 2.24787.

The degrees of freedom value is 24.38 and is reduced to 24, owing to the formula definition requiring rounding down of the value to the least possible integer value.

One can specify a level of probability (alpha level, level of significance,p) as a criterion for acceptance. In most cases, a 5% value can be assumed.

Using the degree of freedom value as 24 and a 5% level of significance, a look at the t-value distribution table gives a value of 2.064. Comparing this value against the computed value of 2.247 indicates that the calculated t-value is greater than the table value at a significance level of 5%.Therefore, it is safe to reject the null hypothesis that there is no difference between means. The population set has intrinsic differences, and they are not by chance.

How Is the T-Distribution Table Used?

The T-Distribution Table is available in one-tail and two-tails formats. The former is used for assessing cases that have a fixed value or range with a clear direction, either positive or negative. For instance, what is the probability of the output value remaining below -3, or getting more than seven when rolling a pair of dice? The latter is used for range-bound analysis, such as asking if the coordinates fall between -2 and +2.

What Is an Independent T-Test?

The samples of independent t-tests are selected independent of each other where the data sets in the two groups don’t refer to the same values. They may include a group of 100 randomly unrelated patients split into two groups of 50 patients each. One of the groups becomes the control group and is administered a placebo, while the other group receives a prescribed treatment. This constitutes two independent sample groups that are unpaired and unrelated to each other.

What Does a T-Test Explain and How Are They Used?

A t-test is a statistical test that is used to compare the means of two groups. It is often used in hypothesis testing to determine whether a process or treatment has an effect on the population of interest, or whether two groups are different from one another.

T-Test: What It Is With Multiple Formulas and When To Use Them (2024)

FAQs

T-Test: What It Is With Multiple Formulas and When To Use Them? ›

A t-test is an inferential statistic used to determine if there is a significant difference between the means of two groups and how they are related. T-tests are used when the data sets follow a normal distribution and have unknown variances, like the data set recorded from flipping a coin 100 times.

How do you know when to use each t-test? ›

If you are studying one group, use a paired t-test to compare the group mean over time or after an intervention, or use a one-sample t-test to compare the group mean to a standard value. If you are studying two groups, use a two-sample t-test. If you want to know only whether a difference exists, use a two-tailed test.

What is the multiple t-test used for? ›

The multiple t test (and nonparametric) analysis can also be used to compare "matched" or "paired" data.

What are the 3 types of t-tests when do you use each one? ›

A t-test may be used to evaluate whether a single group differs from a known value (a one-sample t-test), whether two groups differ from each other (an independent two-sample t-test), or whether there is a significant difference in paired measurements (a paired, or dependent samples t-test).

How to use the t-test formula? ›

The t-score formula for an independent t-test is: t equals the mean of population 1 minus the mean of population 2 divided by the product of the pooled standard deviation and the square root of one over the sample size of sample 1 plus one over the sample size of sample 2.

How do you know if t-test is significant or not? ›

If a p-value reported from a t test is less than 0.05, then that result is said to be statistically significant.

How to interpret t-test results? ›

To interpret the t-test results, all you need to find on the output is the p-value for the test. To do an hypothesis test at a specific alpha (significance) level, just compare the p-value on the output (labeled as a “Sig.” value on the SPSS output) to the chosen alpha level.

Can you use t-test for multiple variables? ›

Note: The Independent Samples t Test can only compare the means for two (and only two) groups. It cannot make comparisons among more than two groups. If you wish to compare the means across more than two groups, you will likely want to run an ANOVA.

Why not use multiple t tests? ›

Why not compare groups with multiple t-tests? Every time you conduct a t-test there is a chance that you will make a Type I error. This error is usually 5%. By running two t-tests on the same data you will have increased your chance of "making a mistake" to 10%.

What are the 4 types of t tests? ›

Types of t-tests
  • Independent groups t-test.
  • Independent samples t-test.
  • Equal variances t-test.
  • Pooled t-test.
  • Unequal variances t-test.

When to use t-test vs ANOVA? ›

The Student's t test is used to compare the means between two groups, whereas ANOVA is used to compare the means among three or more groups. In ANOVA, first gets a common P value. A significant P value of the ANOVA test indicates for at least one pair, between which the mean difference was statistically significant.

When to use a paired t-test? ›

A paired t-test is used when we are interested in the difference between two variables for the same subject. Often the two variables are separated by time. For example, in the Dixon and Massey data set we have cholesterol levels in 1952 and cholesterol levels in 1962 for each subject.

When to use two-sample t-test? ›

When can I use the test? You can use the test when your data values are independent, are randomly sampled from two normal populations and the two independent groups have equal variances.

What is the T method formulas? ›

Introducing the parameter t=tanθ2 turns out to be a very useful tool in solving certain types of trigonometric equations and also in finding certain integrals involving trigonometric functions. The basic idea is to relate sinθ, cosθ and even tanθ to the tangent of half the angle.

What is the formula for the t-test for two samples? ›

Two Sample t test

t test formula (two samples) t = M1 – M2 Spooled Mean of group 1 (M1) minus mean of group 2 (M2), divided by the pooled standard error (Spooled).

What is the T formula used for? ›

The t-formula is very helpful in solving trigonometric equations by changing them to algebraic equations in t. The t-formula can also be employed to find the maximum and minimum of certain trigonometric functions. Certain integrals can be evaluated by t-formula.

How do you know if you should use a paired t-test? ›

A paired t-test is used when we are interested in the difference between two variables for the same subject. Often the two variables are separated by time.

How do you know when to use a one-sample t-test? ›

The one-sample t-test is used when we want to know whether our sample comes from a particular population but we do not have full population information available to us. For instance, we may want to know if a particular sample of college students is similar to or different from college students in general.

How do you know when to use t-score? ›

The t-score is appropriate when your data meets these two requirements:
  1. It has fewer than 30 data points.
  2. You don't know the standard deviation of the whole population, so you can't use a z-score.
Jun 24, 2022

How do you know when to use a dependent or independent t-test? ›

If your data are independent, for example, an independent samples t-test or an ANOVA without repeated measures is calculated. If your data are dependent, a t-test for dependent samples or an ANOVA with repeated measures is calculated.

References

Top Articles
The Sports Report: Dodgers are swept by Padres
Eric Gardner, Manager Who Steered Careers of Todd Rundgren, Cassandra Peterson, Paul Shaffer and Other Stars, Dies at 74
Average Jonas Wife
Durr Burger Inflatable
417-990-0201
Wizard Build Season 28
Blanchard St Denis Funeral Home Obituaries
Steamy Afternoon With Handsome Fernando
Craigslist Mexico Cancun
Athletic Squad With Poles Crossword
Kris Carolla Obituary
You can put a price tag on the value of a personal finance education: $100,000
Ukraine-Russia war: Latest updates
Craigslist Alabama Montgomery
24 Hour Walmart Detroit Mi
The ULTIMATE 2023 Sedona Vortex Guide
How To Cut Eelgrass Grounded
Po Box 35691 Canton Oh
Water Days For Modesto Ca
360 Tabc Answers
Forum Phun Extra
Pearson Correlation Coefficient
When Does Subway Open And Close
Stihl Dealer Albuquerque
Lines Ac And Rs Can Best Be Described As
Gunsmoke Tv Series Wiki
Nikki Catsouras: The Tragic Story Behind The Face And Body Images
APUSH Unit 6 Practice DBQ Prompt Answers & Feedback | AP US History Class Notes | Fiveable
Devotion Showtimes Near The Grand 16 - Pier Park
35 Boba Tea & Rolled Ice Cream Of Wesley Chapel
Whas Golf Card
Reli Stocktwits
Old Peterbilt For Sale Craigslist
Tas Restaurant Fall River Ma
Andhra Jyothi Telugu News Paper
Planet Fitness Lebanon Nh
Hell's Kitchen Valley Center Photos Menu
Ross Dress For Less Hiring Near Me
Mudfin Village Wow
Inducement Small Bribe
Lyndie Irons And Pat Tenore
Kenner And Stevens Funeral Home
Crystal Glassware Ebay
Darkglass Electronics The Exponent 500 Test
The Nikki Catsouras death - HERE the incredible photos | Horror Galore
Grand Park Baseball Tournaments
Madden 23 Can't Hire Offensive Coordinator
Smoke From Street Outlaws Net Worth
Erica Mena Net Worth Forbes
Ark Silica Pearls Gfi
28 Mm Zwart Spaanplaat Gemelamineerd (U999 ST9 Matte | RAL9005) Op Maat | Zagen Op Mm + ABS Kantenband
Mast Greenhouse Windsor Mo
Latest Posts
Article information

Author: Amb. Frankie Simonis

Last Updated:

Views: 5911

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Amb. Frankie Simonis

Birthday: 1998-02-19

Address: 64841 Delmar Isle, North Wiley, OR 74073

Phone: +17844167847676

Job: Forward IT Agent

Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.